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ABSTRACT

I survey the theoretical foundations of the slowly-but-surely emerging field of multiple scattering lidar, which has
already found applications in atmospheric and cryospheric optics that I also discuss. In multiple scattering lidar,
returned pulses are stretched far beyond recognition, and there is no longer a one-to-one connection between
range and return-trip timing. Moreover, one can exploit the radial profile of the diffuse radiance field excited by
the laser source that, by its very nature, is highly concentrated in space and collimated in direction. One needs,
however, a new class of lidar equations to explore this new phenomenology. A very useful set is derived from
radiative diffusion theory, which is found at the opposite asymptotic limit of radiative transfer theory than the
conventional (single-scattering) limit used to derive the standard lidar equation. In particular, one can use it
to show that, even if the simple time-of-flight-to-range connection is irretrievably lost, multiply-scattered lidar
light can be used to restore a unique profiling capability with coarser resolution but much deeper penetration
into a wide variety of optical thick media in nature. Several new applications are proposed, including a laser
bathymetry technique that should work for highly turbid coastal waters.

Keywords: pulse stretching, multiple scattering, Green functions, clouds, aerosol plumes, sea ice, snow, laser
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1. MOTIVATION & OUTLINE

Aerosol remote sensing techniques, both active and passive, fail for dense plumes near sources: fires, volcanoes,
dust storms, etc. Indeed, the lidar’s laser beam cannot penetrate the whole plume due to its shear opacity,
and aerosol retrieval algorithms for processing passive observations are tuned for optically thinner horizontally
uniform atmospheres. Yet these are important phenomena for air quality, aviation safety, weather and climate.

The base of boundary-layer stratus clouds, which matter tremendously for the radiation budget and even the
hydrological cycle, can be so low that it is not detectable by a space-based millimeter radar due to insufficient
vertical resolution, yet it is key to the atmosphere’s thermodynamic profile, hence to global climate dynamics.
Moreover, the smallest amount of drizzle swamps the mm-radar reflectivity, normally targeting droplets.

Sea ice thickness is a key property that is hard to determine by any means. Snow pack thickness is also a
high-value target for water resource management. Even minute amounts of absorbing aerosol particulates in snow
can radically change its albedo and lifecycle, and this also matters for the regional climate. Laser bathymetry
has many operational applications, but it breaks down in highly turbid waters where the two-way transmitted
pulse is all but extinguished by the opaque medium.

All of these remote sensing challenges have, at least in principle, a common solution: multiple scattering
lidar, both ground- and space-based, or airborne.

In this report, I will survey the theoretical background as well as several field demonstrations and feasibility
studies, published or not, that collectively show what kinds of opportunities open up when the conventional

Further author information:
E-mail: Anthony.B.Davis@jpl.nasa.gov, Telephone: 1 818 354 0450



lidar equation (based on a single back-scattering and two-way transmission) is abandoned in favor of multiple-
scattering solutions of the full time-dependent 3D radiative transfer problem for pulsed laser sources, a.k.a.
space-time Green functions of optical media. Closed-form expressions derived in the asymptotic limit of large
scattering coefficients (radiative diffusion theory) are particularly useful for mining the highly-scattered returns
for physical for information content. That form of analysis will be applied to the above-listed problems in remote
sensing of the environment, and instrumental implementation challenges will be discussed.

The outline of this report is as follows. In the next Section, we put the standard “lidar equation” in the
broader context of full-blown radiative transfer (RT) theory. In Section 3, we survey the theory of radiative
diffusion in application to lidar; it is an approximation at the opposite end of the optical thickness scale than
single scattering (hence the standard lidar equation). In Section 4, we visit a number of realized or proposed
applications of multiple scattering lidar: clouds (§4.2), aerosol plumes (§4.3), snow and sea ice (§4.4), and
bathymetry in highly turbid shallow waters (§4.5). Finally, we offer some parting remarks in Section 5.

2. LIDAR EQUATIONS IN THE FRAME OF RADIATIVE TRANSFER

2.1 Implicit Definition of the General (Multiple Scattering) Lidar Equation

The defining pulsed laser sources used in lidar technology are excellent physical approximations of every imag-
inable “delta” in photon state space. Indeed, drawing on their quantum-physical definition as eigenmodes of
the quantized EM field, photons have energy, momentum and spin, which translate to wavelength, direction
of propagation (Ω), and state of polarization. Interestingly, lasers bring one more Dirac δ to the table: they
are, for all practical purposes, point-wise sources of light.∗ The upshot is that, if we accept radiative transfer
(RT) theory as good enough for predicting signals based on atmospheric scattering, then lasers excite RT Green
functions. Mishchenko1 derived RT microphysically from EM theory and statistical optics, with an emphasis
on conditions of validity, which are well verified in most of the natural optical media considered in the present
study.

Let G(t,x,Ω) be the Green function for time-dependent scalar† RT for a δ-source at time t = 0, position
x = (0, 0, 0)T in 3D space (assumed to be a boundary point), and Ω = ẑ (the unit vector in the vertical z
direction). It verifies the following t-dependent 3D RT equation (RTE):

[(

1

c

∂

∂t
+ Ω · ∇

)

+ σ(x)

]

G = S(t,x,Ω) + Q(t,x,Ω), (1)

where σ(x) is the spatially varying extinction coefficient—one of backscattering lidar’s most valued targets.

Physically, (1) balances sources on the right-hand side and sinks on the left for the diffuse/scattered radiant
energy budget of a narrow light beam going through x in direction Ω (geometric optics are assumed). The
direct/un-scattered light will be accounted for in the source term Q(t,x,Ω) for the diffuse light field.

The tally of sinks is short: advection out of a small volume of interest, [c−1∂t + Ω · ∇]G, or depletion by
extinction in the medium, σ(x)G. If that is all we had (right-hand side of (1) vanishes) then we can specify an
initial condition,

G(t,x,Ω) = E0δ(t)δ((x − x0) − ‖x− x0‖Ω0)δ(Ω − Ω0), (2)

expressing that a pulse of light leaves at time t = 0 into direction Ω0 from a position x0 in a plane perpendicular
to Ω0. We then have an exponentially decaying localized pulse propagating downwind of (x,Ω)0:

G(t,x,Ω) = E0δ(t − ℓ/c)δ((x− x0) − ‖x− x0‖Ω0)δ(Ω − Ω0) exp (−τ(x0;x)) (3)

∗In exact EM wave theory, as well as in hardware of course, this can only be approximated as a superposition of plane
waves compatible with the prevailing diffraction phenomena.

†The more exact “vector” or polarized RT theory, where G would be a Stokes vector, is out of the present scope, and
would not bring much more accuracy for the highly scattered, hence depolarized, signals of interest.



for ℓ (= ‖x− x0‖ = ct) ≥ 0, and where

τ(x0;x) =

‖x−x0‖
∫

0

σ

(

x0 +
x− x0

‖x− x0‖
ℓ

)

dℓ (4)

is the optical distance between two points in the 3D medium.

Functions S(t,x,Ω) and Q(t,x,Ω) represent respectively the in-scattering of diffuse light, and our special
choice of source for the Green function problem. For this scenario, we have

Q(t,x,Ω) = Ecδ(t − z/c)δ(~ρ)σs(~0, z)p(~0, z, ẑ ·Ω) exp
(

−τ(~0, 0;~0, z)
)

(5)

where Ec is the total energy in the pulse, ~ρ = (x, y)T is the horizontal projection of x = (~ρ, z)T, σs(x) is the
scattering coefficient, and p(x,Ω′ ·Ω) in 1/sr is the phase function for scattering of light out of direction Ω′ and
into Ω, both σs and p potentially vary in space. The exponential term is Beer’s law for propagating the pulse
vertically from the origin x = (~0, 0)T to (~0, z)T. The (multiple) scattering source function however depends on
the unknown quantity, G(t,x,Ω), and is always given by

S(t,x,Ω) = σs(x)

∫

4π

p(x,Ω′ ·Ω)G(t,x,Ω′)dΩ′. (6)

For future use,
̟0(x) = σs(x)/σ(x) (7)

is the single scattering albedo (SSA), the probability between 0 and unity for the light-matter interaction to end
in scattering rather than absorption; by the same token, σa(x) = σ(x) − σs(x) is the absorption coefficient.

This RT problem still needs boundary conditions (BCs) at the top and bottom of the horizontal plane-parallel
slab 0 ≤ z ≤ H . In short, we need to specify spatially and angularly the incoming radiation at those two planes.

We will assume that the z = H boundary (opposite the origin of the laser source) can be partially reflective,
for simplicity, in a spatially uniform and directionally Lambertian (isotropic) fashion with an albedo α ≥ 0.
Moreover, for reasons clarified further on, there is the possibility of a pulsed point-source of isotropically diffuse
light with total energy Ed ≥ 0 at z = 0 and ~ρ = ~0, i.e., collocated with the impact point of the laser beam
modeled in the bulk source term Q(t, ~ρ, z,Ω) in (5). In other words,

G(t, ~ρ, 0,Ω) =
Ed

π
δ(t)δ(~ρ) (8)

for Ωz > 0, and

G(t, ~ρ, H,Ω) =
α

π
F (+)

z (t, ~ρ, H) (9)

for Ωz < 0. We have introduced here instantaneous hemispherical radiative fluxes for light crossing a plane with
normal n̂ in one direction or the other at space-time position (t,x):

F
(±)
n̂ (t,x) =

∫

±n̂·Ω>0

G(t,x,Ω)|n̂ ·Ω|dΩ. (10)

This completes the description of the theoretical and computational RT problem for the Green function
associated with a boundary source, either well-collimated (Ec = 1, Ed = 0) or diffuse (Ec = 0, Ed = 1), which
can be assumed unitary without loss of generality. Note that, if we shut down Q(t,x,Ω) in (1) by setting Ec = 0
in (5), all the light is diffuse: there is no longer any well-collimated light emanating from a laser-type source.
That changes somewhat the meaning of G(t,x,Ω), which now contains light directly transmitted from the diffuse
point source. Conversely, if Ec > 0, then G(t,x,Ω) contains all the diffuse light whether scattering once or more,



Figure 1. Mean radiance for the steady-state “searchlight” problem in a finite homogeneous slab. Note the deep penetration
of the laser light into this cloud with an optical depth τ = 36 in the absence of absorption by water droplets, as is the case
for (say) 532 nm laser light. The small black and white symbol is discussed in §4.1. The basis of this plot was graciously
contributed by Dr. K. Franklin Evans (U. of Colorado).

or coming directly from a diffuse source while light coming directly from the collimated source is contained in
Q(t,x,Ω).

That said, the above 3D RT problem with at once a non-uniform source and spatially varying optical prop-
erties only has numerical solutions. Some less general problems in uniform media may be amenable to analytical
methods, e.g., steady-state pencil-beam, isotropic scattering, semi-infinite media, etc.2–5

Figure 1 illustrates a numerical solution of the steady-state (i.e., cw laser source) version of the general time-
dependent RT problem defined in the above. It was solved with the Spherical Harmonic - Discrete Ordinate
Method (SHDOM)6 for a uniform non-absorbing (̟0 = 1) cloud of thickness H = 1.2 km with uniform extinction
σ = 30 km−1, hence an optical thickness τ = σH = 36. The phase function is for a “C1” distribution of droplet
sizes7 in a Mie scattering computation8 for λ = 532 nm (i.e., 2×Nd:YAG source). Mean radiance, J/4π from (25)
below, is plotted for a domain larger than the cloud itself. The “rays” emanating from the source region near
the top of the cloud are an artifact of the discrete ordinates scheme (in this case, using Nµ = 12 and Nφ = 24).

In lidar observations, with all orders of scattering included, the field of primary interest is the light escaping
the optical medium through the same (z = 0) boundary as where the laser pulse is injected, i.e., G(t, ~ρ, 0,Ω)
with t ≥ 0, ρ ≥ 0 and Ωz < 0.

2.2 Remote Sensing with Multiple Scattering Lidar: Clouds and Beyond

Imagine, for instance, a sensor at a large standoff distance with a relatively large field-of-view (FOV). Given
the high degree of collimation of laser light, this could be a monostatic system, and was indeed realized in 1994
with the Space Shuttle during the Lidar-In-space Technology Experiment (LITE).9‡ Such a system measures the
spatially-integrated Green function for radiance escaping orthogonally as a function of time:

I(t) =

∞
∫

0

G(t, ~ρ, 0,−ẑ)d~ρ. (11)

‡Spaceborne lidars since then have more focused beams and much narrower FOVs.



This time-varying signal is one of many possible multiple scattering lidar equations defined implicitly through
G(t, ~ρ, 0,−ẑ) by the integro-differential equation set up in (1)–(6) subject to BCs in (8)–(9) with α = 0 in the
case of LITE probing an opaque spatially variable marine stratocumulus layer. This is a computational challenge
even for media with (assumed) uniform optical properties.

Another example is the ground-based Wide-Angle Imaging Lidar (WAIL).10 Its signal can be modeled by
G(t, ~ρ, zcloud,Ω(~ρ)) where zcloud is the range to cloud base and ~ρ scans all the pixels of the temporal sequence
of images (“movie”) formed at its focal plane, controlling the escape direction Ω(~ρ) in the process. For WAIL’s
airborne counterpart, the cloud THickness from Off-beam Returns (THOR) system11 and the ground-based
system using Multiple FOVs (MFOV) technology12, 13 measure the same sample of the Green function (except
for zcloud now being range to cloud top in the THOR configuration) but rewritten as G(t, ~ρ(Ω), zcloud,Ω) where
the viewing direction now controls the horizontal coordinate. However, rather than form an image like WAIL,
THOR and MFOV instrumentally perform broad integrals over all azimuthal angles φ and different bands of
nadir angles θ in Ω(θ, φ) resulting in as many time-dependent signals as there are intervals for θ.§ More details
on WAIL, THOR and other systems will be provided in §4.

Table 1 summarizes the main parameters that have been introduced in either an RTE or a BC along with
their appropriate ranges. In anticipation of Section 4, we also mark them as primary or secondary remote sensing
targets dependent on the medium being probed.

Table 1. The 4 main parameters in new lidar equations are displayed in terms of the 6 cases we investigate in Section 4.
One “?” marks a remote sensing unknown of primary interest; two “??” marks one of secondary interest.

Parameter: single scattering albedo optical thickness geometric thickness surface albedo

Symbol: ̟0 τ = σH H α

Stratiform clouds 1 ? ≫ 1 ? < ∞ 0

Aerosol plumes ? . 1 ? ≫ 1 ? < ∞ 0

Sea ice or clean snow 1 ?? ≫ 1 ? < ∞ 0

Dirty snow ? . 1 ∞ ∞ n/a

Bathymetry & turbidity ?? . 1 ?? ≫ 1 ? < ∞ ?? > 0

2.3 Explicit Expression for the Standard (Single Scattering) Lidar Equation

In conventional backscattering lidar, the source function S(t,x,Ω) in (6) that describes how diffuse laser light is
scattered back into the beam of interest is neglected. In other words, we are only interested in the contribution
to G(t, ~ρ, 0,Ω) from single scattering. However, a look at S(t,x,Ω) in (6) shows that it cannot be “turned off”
except by setting σs = 0, but that also kills the key source term Q(t,x,Ω) in (5). In other words, once the
scattering is started, it cannot be stopped and will generate a systematic forward model error in lidar retrievals.
The only question is: How to keep S ≪ Q? And the only answer is to stay away from even moderate optical
depth in (4). Although the exponential function it drives in the RTE decays rapidly, that only means that a 2nd

scattering will happen sooner, then a 3rd and so on.

The radical choice to neglect S however makes the above problem analytically tractable. Thus, we can derive
the standard lidar equation (in monostatic configuration) simply by estimating the time dependent radiance
at the source position but propagating in the opposite direction. For a ground-based lidar (H → ∞), this is

§The key difference between THOR, a cloud-only instrument, and MFOV systems, which apply to aerosols as well
as clouds, is the much larger outer limit of θ for THOR which naturally leads to different kinds of forward model and
retrieval scheme.



expressed (without the usual “R2” term multiplying the left-hand side) as

G(t, ~ρ, 0,−ẑ) = δ(~ρ)

H
∫

0

exp
(

−τ(~0, 0;~0, z)
)

Q(t − z/c,~0, z,−ẑ)dz

= Ecδ(~ρ)σs(~0, z)p(~0, z,−1) exp(−2τ(~0, 0;~0, z))
∣

∣

∣

z=ct/2
. (12)

We recognize here the range ct/2 from the transmitter to where the optical “echo” originates. We also
identify the important lidar backscatter function σs(x)p(x,−1), that can be separated from extinction σ(x) only
by choosing a value for the notorious “lidar ratio” ̟0(x)p(x,−1) in 1/sr. Given this lidar ratio, typically as a
constant, and the time-dependent signal on the left-hand side of (12), one can derive the extinction profile σ(~0, z)
above the lidar system using, e.g., the Klett algorithm.14

For a downward-looking airborne or space-based lidar (finite H), we need to add to the above the (as-
sumed) Lambertian surface term for a single reflection. For that term, we turn to (9) and (10), which yields

F
(+)
z (t,~0, H) = Ecδ(t − H/c)δ(~0) exp(−τ(~0, 0;~0, H)). Factoring the return trip of the pulse through the whole

medium, we find

G(t, ~ρ, 0,−ẑ) = Ecδ(~ρ)

[

σs(~0,
ct

2
)p(~0,

ct

2
,−1) exp(−2τ(~0, 0;~0,

ct

2
))

+
α

π
exp(−2τ(~0, 0;~0, H))δ

(

t − 2H

c

)]

(13)

We note that this contribution to the time-varying signal is, as expected, a spike at range ct/2 = H .

On physical grounds, multiple scattering is inevitable. There have therefore been many studies about how to
correct for its impact on (12). These investigations rely on numerical solutions15, 16 of the general lidar equation
defined implicitly in §2.1 or analytical approximations thereof.17

2.4 Laplace Transform of General Lidar RTE

Equation (11) is an instance where only the temporal aspect of the Green function is retained. Consider

d Pr(L)/dL =
I(L/c)

c

/
∫ ∞

0

I(t)dt , (14)

which can be interpreted as a probability density function (PDF) for the random pathlength L = ct followed by
the light in the multiple scattering medium (with 1/c being the Jacobian |∂t/∂L|). It can be used, for instance,
to evaluate pathlength moments

〈(ct)q〉I =

∞
∫

0

(ct)q d Pr(ct) (15)

predicated, in this case, on normally escaping intensity.

Moments of a PDF supported by non-negative reals are easily computed by successive derivatives if one knows
the characteristic (a.k.a. moment-generating) function

〈exp(−s′ct)〉I =

∞
∫

0

exp(−s′ct)d Pr(ct). (16)

which is easily obtained from the Laplace transform of I(t) in (14):

Î(s) =

∞
∫

0

exp(−st)I(t)dt, (17)



using s′ = s/c. The characteristic function method for moment estimation yields

〈(ct)q〉I =

(

− d

ds′

)q

〈exp(−s′ct)〉I
∣

∣

∣

∣

s=0

=
1

Î(0)

(

−c
d

ds

)q

Î(s)

∣

∣

∣

∣

∣

s=0

. (18)

In this study, we will use extensively the variability metric based on the ratio of the root-mean-square (RMS)
over the mean, i.e.,

√

〈(ct)2〉/〈ct〉. In the present case, using radiance I, this ratio is the square root of

〈(ct)2〉I
〈ct〉2I

= Î(0)
d

ds

(

1

dÎ/ds

)
∣

∣

∣

∣

∣

s=0

. (19)

As it turns out, Î(s) and, more generally speaking, Ĝ(s′,x,Ω) is in fact the solution of a more easily solved
steady-state RTE obtained by taking the Laplace transform of both sides of (1), supplemented with transforms
of (5)–(6). Assuming a uniform optical medium for simplicity, this results in

[Ω · ∇ + (σ + s′)] Ĝ = Ŝ(s′,x,Ω) + Q̂(s′,x,Ω), (20)

with

Ŝ(s′,x,Ω) = σs

∫

4π

p(Ω′ · Ω)Ĝ(s′,x,Ω′)dΩ′, (21)

and
Q̂(s′,x,Ω) = Ecδ(~ρ)σsp(ẑ ·Ω) exp (−(σ + s′)z) . (22)

For BCs, we find

Ĝ(s′, ~ρ, 0,Ω) =
Ed

π
δ(~ρ) for Ωz > 0, (23)

Ĝ(s′, ~ρ, H,Ω) =
α

π
F̂ (+)

z (s′, ~ρ, H) for Ωz < 0. (24)

If, moreover, we consider only spatially integrated quantities, such as in (14), then the δ(~ρ) terms can be removed
from all the above, accordingly replace pulse energies Ec,d in J with steady flux densities Fc,d in W/m2, and
replace x or (~ρ, z) with just z. This reduces the temporal Green function problem to a classic 1D RTE problem.

In other words, we have simply added s′ = s/c to the absorption coefficient σa in extinction σ’s decomposi-
tion into σs + σa. even if σa = 0, there is now an “effective” absorption coefficient. To underscore this formal
equivalence between time-dependence and absorption, the key definition in (17) is sometimes called the “equiva-
lence theorem”.18, 19 From this standpoint, I(L/c)/c is the given pathlength-dependent radiance observed in the
absence of uniformly distributed (hence gaseous in the atmosphere) absorbing material, and Î(s) is the computed
radiance for a given absorption coefficient s/c.

It is noteworthy that not only are there many excellent numerical codes for solving the spatially-integrated
version of (20)–(22) with BCs (23)–(24), there is an emerging observational technology where Î(s′,Ω) is measured
directly over a broad range of its argument. In this case, s′ is the known absorption coefficient of a uniform
gas. This technology is passive and uses the sun as a plentiful source: oxygen A- or B-band spectroscopy (at
as high a resolution and out-of-band rejection as possible20). If we know Î(s′,Ω), then we can easily compute
the sequence of temporal (equivalently, pathlength) moments in (18). Anything we can learn about the medium
from them can thus be inferred from this interesting passive modality.

Further discussion of high-resolution O2 spectroscopy is out of the scope of this report. We refer to Davis et
al.21 for more details in a formalism with unified signal physics between the passive and active approaches. We
simply note the natural complementarity of the two approaches with shared signal models in spite of radically
different hardware. Indeed, multiple scattering lidar signals are weak and, so far, observed only by night. The
solar background is likely to swamp them unless very sophisticated filtering is brought to bear.22 But sunrise is
precisely when the passive A-band spectroscopy becomes available.



3. LIDAR EQUATIONS IN THE FRAME OF DIFFUSION THEORY

Here, we introduce formally the radiative diffusion approximation that is as useful for highly opaque media as
the single scattering approximation is for optically thin ones.

3.1 The Hierarchy of Transport Equations for Angular Moments

Define the three first directional momenta of the Green function:

J(ct,x) =

∫

4π

G(ct,x,Ω)dΩ; (25)

F(ct,x) =

∫

4π

ΩG(ct,x,Ω)dΩ; (26)

K(ct,x) =

∫

4π

ΩΩG(ct,x,Ω)dΩ. (27)

Their Laplace transforms, [J,F,K](s,x), are defined similarly where, from now on, we use s instead of s′ as the
Laplace conjugate variable for pathlength ct. Also, we will no longer use the “circumflex” notation to distinguish
a quantity from its Laplace transform since it will be clear from context.

Physically, J in (25) has units of flux [W/m2] but is a measure of radiant energy density in space-time,
irrespective of direction of propagation. In fact, this scalar flux can be linked to radiant energy density U in
J/m3: U = J/c. By the same token, vector flux F measures the mean “current” of the flow of radiant energy.
using the definitions in (10), one can show that the net radiative flux across a plane normal to n̂ at any (ct,x) is

n̂ ·F = F
(+)
n̂ − F

(−)
n̂ (28)

Finally, the tensor flux K captures the pressure and stress in the radiant energy flow.

Recall that we’ve assumed the the scattering phase function depends only on the scattering angle θs =
cos−1(Ω ·Ω′). Our normalization convention is

∫

4π

p(Ω · Ω′)dΩ′ = 1, (29)

and we define the “asymmetry factor” of the phase function as

g =

∫

4π

Ω · Ω′p(Ω ·Ω′)dΩ′, (30)

which is a simple measure of how forward-peaked is the phase function. For liquid water clouds, g ≈ 0.85.

Taking the first two directional integrals of all the terms in the steady-state 1D RTE (20)–(22), we find

∇ ·F = −(σa + s)J + Ecσsδ(~ρ) exp(−(σ + s)z), (31)

∇ ·K = −(σt + s)F + Ecgσsδ(~ρ) exp(−(σ + s)z), (32)

where
σt = (1 − ̟0g)σ = (1 − g)σs + σa, (33)

is the “transport” extinction coefficient.

Recall that, at least in uniform optical media, ℓ = 1/σ is the characteristic lengthscale in Beer’s law of light
propagation subject to an exponential decay in the source-free RT problem solved with (3). It is often called the
“photon mean-free-path” (MFP) by analogy with the kinetic theory of gases. However, since phase functions of
atmospheric and hydrospheric particulates are often very forward-peaked, a scattering every ℓ on average does



generally not translate into a major change in direction. That is what the “scaled” or transport MFP ℓt = 1/σt

is about. It is 1/(1−̟0g)× longer than ℓ (≈6.7× in clouds) but, by that many scatterings, directional memory
is lost. We might as well wait that much longer, and then scatter isotopically.

The angularly-integrated radiation transport equations in (31)–(32) are the beginning of an infinite sequence
calling for ever higher counterparts of the three quantities in (25)–(27). The first, (31) expresses locally the
conservation of radiant energy while the second (32) expresses locally the conservation of momentum in the light
field. In both cases, the contributions of diffuse (terms with J,F, or K) and non-scattered (last terms) light are
clearly separated when Ec > 0 and Ed = 0.

3.2 The Eddington Closure

The diffusion approximation follows immediately from the Eddington closure for the above hierarchy of exact
space-time transport equations:

K(s,x) ≡ J(s,x)

3
1, (34)

where 1 denotes the unity diagonal tensor. This is tantamount to stating that radiation pressure is isotropic,
thus expressing that the radiation field is “thermalized” by the optical medium.

The RT problem at hand has thus become a coupled pair of PDEs starting with the (exact) energy conservation
law in (31), and ending with the constitutive relation

∇J/3 = −(σt + ζs)F + Ecgσsδ(~ρ) exp(−(σ + s)z), (35)

where we set ζ = 1 at present. If Ec = 0 (only diffuse boundary sources are present), then we retrieve Fick’s
law, F = −D∇J , where D = 1/(3(σt + s)) is the radiative diffusivity constant.¶

Now, technically speaking, the coupled PDEs in the time-domain leading to (31) and (35) in Laplace space, do
not amount to a diffusion model per se but to the slightly superior “telegrapher’s problem.” The only difference
is the first occurrence of “s” on the right-hand side of (35): it comes from ∂ctF, which is explicitly neglected in
classic diffusion theory.‖ In the present setting, we can back off to classic diffusion be setting ζ = 0.

Eddington’s closure has a major impact on G(ct,x,Ω) in (25)–(27). Specifically, it is exactly as if the radiance
field was reduced to a 1st-order expansion in spherical harmonics:

G(ct,x,Ω) =
1

4π
[J(ct,x) + 3Ω · F(ct,x)] , (36)

and similarly for G(s,x,Ω) with J(s,x) and F(s,x). Consequently, the only spherical harmonics of the phase
function that matter here are the 0th- and 1st-order terms:

p(Ω ·Ω′) =
1

4π
[1 + 3gΩ ·Ω′] . (37)

Note that to keep the scalar flux and phase function non-negative, we should require ‖F‖ ≤ J/3 and g ≤ 1/3.
But that is not always possible in natural media. We must therefore be vigilent about non-physical predictions
by diffusion theory, which doesn’t mean that the general trends it predicts aren’t correct.

Physically, (36) means that in direction space the radiance field is everywhere and at all times made of a
monopole (isotropic term) superposed with a dipole: radiance traces a sine function in angle in every plane; its
amplitude is maximal when the plane contains F, and it vanishes in the plane perpendicular to F. This is a
reasonable assumption deep enough inside opaque media such as clouds, and has indeed been observed directly

¶In particle diffusion (a.k.a. Brownian motion) theory, diffusivity is defined as the proportionality constant in Fick’s
law, j = −D∇n, where j is particle current density in [s−1m−2] is analogous to our vector flux F, and particle density
n in [m−3] is analogous to our radiant energy density U = J/c. Thus, the classic expression for diffusivity D = cℓt/3 in
[m2/s] is retrieved.

‖This is the origin of the violations of causality that strict diffusion theoretical solutions show at very early times, with
ρ increasing as

√
t. The telegrapher’s equation does not have this issue.



inside clouds when expected.23, 24 Equation (36) is at its best if we are only concerned with the diffuse light field,
i.e., we use the representation of laser sources where Ec > 0 and Ed = 0. In that case, the highly anisotropic
directly transmitted radiation and first-order scattering in the source terms in (31) and (35) convey the memory
of the laser-source’s strong directionality. Otherwise (Ed > 0 and Ec = 0), that memory is immediately lost as
soon as we enter the medium.

3.3 Boundary Conditions in Diffusion Theory

The reader has probably realized by now that in solar and lidar atmospheric RT problems, boundary layers are
regions of vulnerability for diffusion theory as encapsulated in the assumption that (36) applies everywhere. Yet
we need BCs for the coupled 1st-order PDEs we have now at hand. They must express in the “flux” language
of diffusion theory, what radiation is entering the medium, or not.

We first turn to the diffusion theoretical expression in (36) for G(ct,x,Ω) and compute hemispherical fluxes

in both directions at both boundaries. We thus evaluate F
(±)
z (ct,x) from (10), leading to:

F (±)
z (ct, ~ρ, 0) = J(ct, ~ρ, 0)/4 ± Fz(ct, ~ρ, 0)/2, (38)

F (±)
z (ct, ~ρ, H) = J(ct, ~ρ, H)/4 ∓ Fz(ct, ~ρ, H)/2. (39)

For the required BCs, we take (+) at z = 0 and (−) at z = H .

Following long-established tradition in the diffusion approximation to linear transport theory,25 of which RT
is just one example, we preemptively rewrite these boundary-crossing hemispherical fluxes as

F (±)
z (ct, ~ρ, 0) = [J(ct, ~ρ, 0) ± 3χFz(ct, ~ρ, 0)]/4, (40)

F (±)
z (ct, ~ρ, H) = [J(ct, ~ρ, H) ∓ 3χFz(ct, ~ρ, H)]/4, (41)

introducing χ as an O(1) numerical factor that we can use to improve the diffusion model’s accuracy w.r.t. to
some benchmark result obtained from bone fide RT. Since the above BCs are statements about the incoming

hemispherical fluxes F
(±)
z there is indeed no compelling reason to impose Fick’s law for Fz = F

(+)
z −F

(−)
z at the

boundary. If we did, we would find χ = 1/3, which is too low.

Recalling that Fz = −∂zJ/3(σt + s) by Fick’s law, it is clear why χ is called the “extrapolation scale”
factor: it modulates the distance outside the medium at which J will take a BC-prescribed value using a linear
approximation based on (J, ∂zJ) at z = 0 or H . Based on (38)–(39), χ = 2/3 is clearly a natural choice, and it
is in fact required to conserve energy when Ec > 0 (and Ed = 0). However, other choices have been proposed
and used when Ed > 0 , such as 1/

√
3 ≈ 0.577 and 0.7104· · · .

We now turn to the expressions for directional radiance in the RT BCs (8) and (9). Here, we find

F (+)
z (ct, ~ρ, 0) = Edδ(~ρ), (42)

F (−)
z (ct, ~ρ, H) = αF (+)

z (ct, ~ρ, 0). (43)

Equating with appropriately signed flux in (40)–(41), we find:

J(ct, ~ρ, 0) + 3χFz(ct, ~ρ, 0) = 4Edδ(~ρ), (44)

(1 − α)J(ct, ~ρ, H) − 3χ(1 + α)Fz(ct, ~ρ, H) = 0. (45)

The above BCs at z = 0, H carry over directly to the Laplace-transformed problem for J(s, ~ρ, z) and Fz(s, ~ρ, z).

3.4 Outgoing Boundary Fluxes from Diffusion Theory

In remote sensing, we are only interested in the outgoing boundary radiances, so here we are particularly in

outgoing fluxes, F
(−)
z (ct, ~ρ, 0) for diffuse reflection and F

(+)
z (ct, ~ρ, H) for diffuse transmission (possibly including

some direct as well if Ed > 0).



When sources are directional and internal (Ec = 1, Ed = 0) and the ground is black (α = 0), we can define
and evaluate

R(ct, ~ρ) = F (−)
z (ct, ~ρ, 0)/Ec = J(ct, ~ρ, 0)/2Ec, (46)

T (ct, ~ρ) = F (+)
z (ct, ~ρ, H)/Ec = J(ct, ~ρ, H)/2Ec, (47)

respectively, the normalized space-time reflection and transmission functions, where we combined the corre-
sponding BC and hemispheric flux estimations. When sources are diffuse and confined to the boundary at z = 0
(Ed = 1, Ec = 0) and the ground is again black (α = 0), we find

R(ct, ~ρ) = F (−)
z (ct, ~ρ, 0)/Ed = J(ct, ~ρ, 0)/2Ed − 1, (48)

and the same expression for T (ct, ~ρ) as in (47) but it now applies to total transmission. Although it will not
amount to much in opaque diffusive media, this includes light coming directly from the diffuse source on the
opposite side.

All of the above carries over immediately from functions of (ct, ~ρ) to functions of (s, ~ρ). We will revisit the
case where α > 0 using a different approach in §3.6.

3.5 Horizontally Fourier-Transformed Problem

Although we have carried so far the possibility of arbitrary horizontal variations with ~ρ, lidar systems generally
orient the transmitted beam vertically. So both types of source considered here are azimuthally symmetric, and
so will be the Green functions they excite, i.e., they will depend only on ρ = ‖~ρ‖. This rotational symmetry
opens the possibility of a highly simplified problem after a horizontal Fourier transformation.

Consider the 2D horizontal Fourier transform of the already Laplace transformed J(s, ~ρ, z):

J̃(s,~k, z) =

+∞
∫∫

−∞

J(s, ~ρ, z) exp
(

i~k · ~ρ
)

d~ρ. (49)

We can write a similar expression for F(s, ~ρ, z) = (~Fh, Fz)
T(s, ~ρ, z). Recalling that Fourier transformation

translates the gradient operator ∇ = (~∇, ∂z)
T into (i~k, d/dz)T, we Fourier transform the first-order coupled

PDEs (31) and (35). After a little algebra, we are left with 2 coupled ODEs in z for {J̃ , F̃z} instead of 4 coupled
PDEs in x for {J,F}:

dF̃z

dz
= −

(

σa + s + k2/3σt

)

J̃ + Ecσs exp(−(σ + s)z), (50)

dJ̃

dz
= −3 (σt + ζs) F̃z + 3Ecσsg exp(−(σ + s)z). (51)

We can now view s and k2 just as parameters in a 1D RT problem in z. Mathematically, this 1D RT problem
is quite similar to the “delta-Eddington” version of the classic two-stream model used primarily in shortwave
radiation budget estimation26 in the special case of normally incident sunlight. Apart from the appearance of a
total pulse energy Ec instead of the extra-atmospheric solar irradiance (often denoted by F0), the problems are
identical if we set ζ = 1 and k = 0 (spatially-integrated observations only).

The BCs in (44)–(45) are straightforward to recast:

J̃(s, k2, 0) + 3χF̃z(s, k
2, 0) = 4Ed, (52)

(1 − α)J̃(s, k2, H) − 3χ(1 + α)F̃z(s, k2, H) = 0. (53)

The simple expressions in §3.4 for R and T in (ct, ~ρ)-space carry over immediately to (s,~k) space, recalling that
they are already customized for the case of black (α = 0) surfaces.



An immediate advantage of having the 2D Fourier transform of steady-state (s = 0) outgoing boundary

fluxes, F̃ (~k) with F = R, T is the capability of computing the non-vanishing (even-ordered) statistical moments
of ~ρ, the random horizontal transport distance upon escape away from the z-axis, which is aligned with the
incoming laser beam. (By azimuthal symmetry, we know that odd-ordered moments, including the mean 〈~ρ〉F ,
vanish identically.) Specifically, going back to (49), we can show that the variance

〈ρ2〉F =

+∞
∫∫

−∞

~ρ2F (0, ~ρ)d~ρ

/+∞
∫∫

−∞

F (0, ~ρ)d~ρ, (54)

for F = R, T , which can be evaluated from

〈~ρ2〉F =
−1

F̃ (0,~0)
~∇2F̃ (0, ~k)

∣

∣

∣

∣

~k=~0

=
−2

F̃ (0, 0)

(

d

d(k2)

)

F̃ (0, k2)

∣

∣

∣

∣

k2=0

. (55)

In analogy with the similar process used in the time-domain in §2.4, we can identify

〈

exp
(

i~k · ~ρ
)〉

F
=

F̃ (0, k2)

F̃ (0, 0)
(56)

as the Fourier-characteristic (or “moment-generating”) function for ~ρ, the random horizontal transport distance
at escape.

As for the previously introduced Laplace-only transforms, we will drop in the remainder of the report the
“tilde” notation for Fourier-Laplace transformed quantities. The distinction will be obvious by the context
and/or the stated arguments.

3.6 Probabilistic Interpretations & Multiple Surface Reflections

In the 2+1D physical space spanned by (ct, ~ρ), ct is the random pathlength upon escape that describes the
stretching of the incoming laser pulse by multiple scattering and ~ρ the random horizontal transport distance
upon escape away from the incoming laser beam. Consequently, F (ct, ~ρ) with F = R, T is a joint form of the
“impulse response function” (IRF) of the medium to a delta-in-time source at a boundary (usually presumed
spatially uniform), and its “point spread function” (PSF), defined as the response of the medium to a delta-

in-space source at a boundary (usually presumed steady in time). That makes F (s,~k) with F = R, T a joint
Laplace frequency response function (LRF) and modulation transfer function (MTF) for the medium of interest.

Focusing on overall reflection, how does the presence of a reflecting surface affect these random variables?
The light can bounce (partially, when α < 1) off the ground any number of times: 0,1,2,3,· · · . Each time it does,
it is as if, after a certain amount of scattering, a secondary source appears at the ground at some random value
of (ct, ~ρ) and the transport process through multiple scattering starts again, but from an isotropic source on hte
opposite side of the medium. The random outcome in (ct, ~ρ) at z = 0 after one surface reflection is the sum of
two random variables for transmission, first for a collimated source, then for a diffuse source, modulated by the
probability of ground reflection (0 < α ≤ 1). But the medium can itself reflect the bounced (isotropic) light back
to the surface for another reflection, thus adding more random space-time variables, and so on.

Formally, this can be written as an infinite sequence of space-time convolutions. Specifically, for the overall
reflection back to the region where the laser light comes from, we have:

R = Rc + Tc ∗
(

αTd + α2Rd ∗ Td + α3Rd ∗ Rd ∗ Td + · · ·
)

= Rc + Tcα(1 − αRd)−1Td, (57)

where Fc,d (F = R, T ) are the space-time responses respectively for collimated and diffuse boundary sources,
and all the products of functions of (ct, ~ρ) are in fact convolution products, denoted here by ∗ (only in the first
line).



Fortunately, there are Fourier- and Laplace theorems stating that the characteristic function of a sum of
random variable is the (standard) product of the characteristic functions of all the random variables. Moreover,
this generalizes to higher dimensions, and even to heterogeneous spaces such as R

+⊗ R
2 spanned by (ct, ~ρ)T.

Consequently, the second line in (57) can be used as is for the Fourier-Laplace transformed multi-variate
response functions. Moreover, this only calls for the “black surface” quantities estimated in §3.4 (after Fourier–
Laplace transformation). This solves the most general problem we have in mind for the present investigation on
new lidar equations for multiple scattering in opaque natural media. We now examine a few applications.

4. NEW LIDAR EQUATIONS AT WORK IN OPAQUE NATURAL MEDIA

4.1 “Crude” Versus “Refined” Diffusion Theories

The analytical solutions of diffusion models have always been and will continue to be evaluated against numerical
solutions of the full time-dependent 1D RTE using, until further notice, Monte Carlo techniques. However,
among diffusion models there are several levels of anticipated accuracy with respect to the full RTE solutions.
The telegrapher’s equation (ζ = 1) is better than the classic diffusion equation (ζ = 0). It is better to use Ec = 1
and Ed = 0 (collimated internal sources) than Ed = 1 and Ec = 0 (isotropic boundary sources).

There is an easy way to improve some of the better diffusion models using collimated internal sources, namely,
by invoking the δ-Eddington scaling.27 This starts with the remark that one can take a fraction f ∈ (0, 1) of
the phase function in (37) and put it into a Dirac δ at θs = 0, thus effectively replacing forward scattering by no
scattering. Holding the overall g constant, the renormalized phase function has a lesser asymmetry factor

g′ =
g − f

1 − f
. (58)

Accordingly, extinction is replaced by
σ′ = (1 − f̟0)σ, (59)

and SSA by

̟′
0 =

1 − f

1 − f̟0
̟0. (60)

A popular choice for f is g2, which reduces g′ = g/(1 + g) to the interval (0, 1/2), based on energy budget
considerations. With that rational choice, we also find that

σ′
a = σa, (61)

σ′
t = σt. (62)

These properities are thus invariant under δ-Eddington scaling. It immediately follows that the (s = k2 = 0)
albedo for diffuse boundary source diffusion models, with Ec = 0 and Ed > 0, is not affected since it is a function
only of σa and σt. But models with distributed internal anisotropic sources (Ec = 0 and Ed > 0) should see some
improvement since g′ < g. The multiple scattering diffusion model per se is now tasked with a more isotropic
scattering and a more isotropic source.

There are also potentially worse models than used here so far, although to what extent has yet to be assessed.
An example is to use instead of the exact diffusion BCs in (44)–(45) “extended” ones for the 2nd-order ODE
that results from the elimination of Fz between (50) and (51) for classic (ζ = 0) diffusion theory. Specifically,
we obtain a Helmoltz or (screened) Poisson-type equation,

[

d2

dz2
+ 3σt

(

σa + s + k2/3σt

)

]

J =

{

0
Ed exp(−s/σt)δ(z − 1/σt)

, (63)

for which we use the Dirichlet (rather than exact Robin or “mixed”) BCs:

J(−χ/σt) =

{

4Ed

0
, (64)

J(H + χ/σt) = 0, (65)



where χℓt = χ/σt is the extrapolation length. We have here two variants. The upper expressions on the right-
hand sides of (63) and (64) mimic the isotropic boundary source model (Ec = 0 in previous versions). The lower
expressions mimic the idea of internal source (Ec > 0 in previous versions). However, rather than an anisotropic
source distributed along the z-axis, as in (50)–(51), one can reduce it to an isotropic source at one transport
MFP (ℓt = 1/σt) into the medium. Going back to Fig. 1, we now note that the black symbol is placed at exactly
one transport MFP (0.22 km) into the cloud. It seems to be a good position for an isotropic source to create
roughly the same far-field radiance pattern.

A demonstrated28 advantage of these approximate diffusion models in (63)–(65) is that the resulting closed-
form solutions are invertible Laplace- and Fourier transforms in the form of infinite series, one appropriate for
early times and short off-axis distances, and another far more interesting one for the opposite asymptotic limit.

Now, in the following, we seek only the basic information content of a given multiple scattering lidar obser-
vation based on the new equations. In our experience, even the most basic diffusion model delivers the right
qualitative answer. We will therefore proceed with any convenient model. Table 2 shows the options used in the
following case studies.

Table 2. Features of the diffusion models used in the cases studies. In the bathymetry study, the only one with a partially
reflecting surface (cf. Table 1), requires responses for both collimated and diffuse illuminations, as evidences in (57). (So
Ed = 1 here is not used as an approximation.)

Parameter: ζ Ec Ed Extended BCs δ-Eddington

Stratiform clouds 0 0 1 no no

Absorbing aerosol plumes 1 0 1 no no

Dirty snow 0 0 1 no no

Bathymetry & turbidity 0 1 (1) no yes

4.2 Stratiform Clouds

Although multiple scattering lidar has not been adopted as an operational approach in cloud remote sensing,
these natural media have been the subject of conclusive pilot studies using the new technology. These studies
demonstrated that stratiform clouds—extensive unbroken layers that approximate the assumed plane-parallel
slab geometry—can be remotely probed with multiple scattering lidar. In §2.2, we mentioned three case studies:
ground-based WAIL, airborne THOR, and space-based LITE.

The first two came to fruition at a successful joint field campaign conducted in March 2004 at the DOE’s
Atmospheric Radiation Measurements (ARM) facility in Norman, Oklahoma.10, 11 WAIL data was used to derive
the pair {H, τ} for two collections with the prototype system built at Los Alamos National Laboratory (LANL).
The cloud property retrieval used a parametric diffusion-based forward model predicated on (63)–(65) followed
by inverse Fourier–Laplace transforms. The WAIL data was indeed limited to Green function observations that
were highly truncated spatially due to a combination of insufficient FOV (even at 54◦) and low cloud base (at
≈0.5 km), thus precluding methods based on empirical estimates of the statistical moments in (18) and (54).
That same night in March 2002, THOR operated nominally at 8–9 km above data top. Its data was used to
derive many values of H for the same cloud deck using a neural network to infer cloud properties from a large
number of Monte Carlo simulations. THOR data collected during that 2004 deployment was recently revisited
with a promising new forward model akin to diffusion29 and a variational data analysis methodology inspired
by data assimilation.30 The cloud properties delivered by both WAIL and THOR compared well with those
measure directly by ARM instruments or, in the case of THOR, objectively extended from these to the whole
region where the overflight was performed using the meteorological situation.

Interestingly, LITE preceded THOR and WAIL by almost 8 years. It was a historically important and de-
liberate demonstration of lidar technology in space that has since be followed by the ICESat31 and CALIPSO32



missions, with more to come. However, as a test of multiple scattering lidar in clouds, LITE was largely inad-
vertent: instrument parameters, essentially unchanged from a large upward-looking system targeting aerosols,
were just right for looking down at clouds.33

One more active optical instrument development project with a closely related signal physics was not men-
tioned in §2.2 because it is not a remote sensing technique per se: in situ cloud lidar.34, 35 In this alternative
airborne method a pulse laser is fired horizontally out of a window of a LearJet (instrumented for probing cloud
particles directly from inside the cloud) and highly scattered laser light is gather by relatively wide FOV non-
imaging sensors looking up and down from the tip of the wing on the opposite side of the aircraft. The data
analysis also used numerical Monte Carlo results (for stochastic cloud models with 3D spatial variability) that
were inverse-mapped to cloud properties (plus aircraft location between boundaries) using a neural network.
The airborne technology demonstration was highly successful and the inversion technique was validated against
other cloud probes on a mountain-top facility.

Before moving on to our physics-based information content analysis of multiple scattering lidar using diffusion-
theoretical methods for clouds and beyond, we must draw the readers attention to the fact that all of the above
cloud observations were performed at night, and this was key to their success. Daytime observations of the
relatively weak multiply scattered laser light at significant distances from the beam will be a challenge that can
only be addressed by using rather sophisticated filtering methods to reject the solar background. A preliminary
lab study is described by Love et al.22

To kick off the theoretical assessment of the data worth mining in multiple scattering lidar systems adapted
for a number of opaque natural optical media listed in Table 1, we start with clouds even if the proof-of-concept
is in for the hardware as well as for data analysis methods.

Going back to the first dedicated paper on multiple scattering cloud lidar by Davis et al.,36 the simplest kind
of diffusion model was used and the instrument was assumed “perfect” in the sense that its data is good enough
to estimate 〈(ct)q〉 in (18)) for q = 1 and 2, 〈ρ2〉 in (54), and possibly also the spatial and temporal integral of
the Green function, a.k.a., cloud albedo

R =
1

Ec/d

∞
∫

0

+∞
∫∫

−∞

G(ct, ~ρ)dctd~ρ = R̃(s, k2)
∣

∣

∣

s,k=0
, (66)

which would call for absolute radiometric calibration. The statistical moments of the Green function, being ratios
of integrals are not dependent on radiometric calibration, i.e., do not care about the value of Ec/d. As long as
responses are linear in radiometry and uniform in space and time, we can estimate the moments accurately. We
revert to these simple premises for the reminder of the paper on the basis that, so far, they correctly predicted
what can be done with a real multiple scattering lidar system. At any rate, they are good enough to evaluate
the need for deeper investigation.

We therefore solve the simple ODE problem in (50)–(53) with:

• σa = 0, expressing that there is no absorption by water droplets or crystals (say, by choosing to use a green
laser source);

• ζ = 0 (no need for the telegrapher’s equation);

• Ed = 1, diffuse boundary sources suffice (hence Ec = 0); and

• α = 0, black surface (approximating water).

This gives us the pair of functions {J(z), Fz(z)}, from which we only need to compute the Fourier-Laplace
transform of the reflected flux (48), namely,

R(s, k2) =
J(s, k2)

2
− 1 =

[1 − (k2/σt + 3s)]χ2

[1 + (k2/σt + 3s)]χ2 + 2
√

k2/σt + 3sχ coth(Hσt

√

k2/σt + 3s)
. (67)
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Figure 2. Utilization of three moments from a cloud’s Green function in space and/or in time, along with its albedo R0,
to infer the two basic cloud properties {H, τ}. See discussion of several possible approaches in main text.



The change of variables to the more common parameterization of cloud optical properties is straightforward:
σt = (1 − g)σ (where g ≈ 0.85 for liquid water clouds), where σ = τ/H .

From there, we get the cloud albedo

R0 = R(0, 0) =
(1 − g)τ

2χ + (1 − g)τ
, (68)

a classic result from two-stream theory.37 By estimating derivatives of (67) at s, k2 = 0, we obtain the Green
function moments of interest:

〈ct〉 = 2χH × (1 + C1[(1 − g)τ/2χ]) , (69)

〈(ct)2〉 =
4

5
χH2(1 − g)τ × (1 + C2[(1 − g)τ/2χ]) , (70)

〈ρ2〉 =
4

3

χH2

(1 − g)τ
× (1 + C1[(1 − g)τ/2χ]) , (71)

where we have highlighted the asymptotic scaling with the key cloud properties {H, (1 − g)τ}; pre-asymptotic
corrections are

C1(X) =
3 + 2X

4X(1 + X)
, (72)

C2(X) =
45 + 2X(75 + 82x + 32X2)

16X2(1 + X)2
, (73)

which both vanish as 1/X when X → ∞. We note that they are identical for 〈ct〉 and 〈ρ2〉, which follows from
the equivalent roles in (67) of s and k2/3σt. In fact, this similarity relation can be used to translate the leading
terms for 〈ct〉 into those for 〈ρ2〉 using σt = (1 − g)τ/H .

We consider the left-hand sides of (69)–(71) to be the multiple scattering lidar observables that do not require
calibrated radiometry. Any pair of these expressions for moments can be used to solve for {H, τ}, knowing that
g ≈ 0.85. We note here—and this remains true for the remainder of the paper—that since we are using only
“marginal” moments (i.e., observations) either of pathlength or of horizontal transport distance, the sensors we
need in practice can be quite simple. They consist only of:

• a standard lidar receiver for measuring returned pulses, but fed with a fore-optics with a wide-enough FOV
for estimating 〈(ct)q〉 (q = 1, 2), and

• a flat-fielded digital camera, also with a sufficiently wide FOV for estimating 〈ρ2〉.

If that never-easy radiometric calibration is available, it is probably by using a collocated passive sensor for
diffusely reflected solar radiation. In that case, we can also use R0 in (68) or, if it is a ground-based station,
we can equally well use the cloud’s transmittance T0 = 1 − R0 = 1/(1 + (1 − g)τ/2χ). But it is interesting to
note that scaled cloud optical depth (1 − g)τ can be obtained from non-calibrated data used to form the above
moments or, better still, moment ratios that do not even involve H .

All four cloud responses in (68)–(71) have been used to produce the four panels in Fig. 2 where we have set
g = 0.85 and χ = 2/3. On the top row, we show two non-dimensional monotonic functions of τ ; either one can
be used to obtain that non-dimensional cloud property. However, on the right, we find R0(τ), which calls for a
well calibrated radiometer. On the bottom row, we find non-dimensional ratios H/〈ct〉, and H/

√

〈ρ2〉; one or the
other can be used to derive H knowing respectively the mean pathlength or the RMS horizontal displacement.
Their asymptotic trends in τ are indicated throughout.

The two observations used on the left of Fig. 2 suffice to infer {H, τ}, and they use only a standard lidar
detector with adapted fore-optics, without a need for calibration. The same is true of the two observations used
on the right, but the one for R0 (top panel) calls for absolute radiometric calibration. In compensation for that
complication, the instrument used to obtain 〈ρ2〉 can be as simple as a digital camera since there is no need for
resolving the time-dependence: one only needs to image the spatial Green function.



4.3 Extended Aerosol Plumes

Here we simply ask if we can extend the simple study of cloud property feasibility to the case of dense plumes
of absorbing aerosol such as

• dust, lofted and transported away from source regions;

• volcanic ash;

• smoke, from wild fires and biomass burning.

This capability would be of considerable interest to applied scientists focussing on the climate impacts of aerosols,
air quality monitoring and forecasting, and aviation safety.

In terms of remote sensing and the forward radiative transfer modeling, we simply want to add the SSA
̟0 to the two cloud unknowns {τ, H}. To explore this possibility, again adopt a simple diffusion model in
(50)–(53) with Ed = 1 (hence Ec = 0), ζ = 1 (telegrapher’s problem), α = 0, and now allow for σa > 0.
However, it is intuitively clear that diffusion theory, which thrives on scattering, cannot account accurately for
strong absorption. SSA values less than 0.9 would be risky. Yet absorbing aerosols can have lower values of
̟0. However, we recall once more that we are not trying here to build a quantitatively accurate model, say,
to analyse real data. Rather, we wich to draw qualitative conclusions about information content of some given
multiple scattering lidar observations.

The outcome of the computation for R(s, k2), also a function of the parameter set (H, σt, σa, χ), is as in (67)
but more complex. The subsequent change of variables also needs to be modified: σa = (1−̟0)σ, σt = (1−̟0g)σ
(where g is smaller for aerosols than for liquid water clouds), and σ = τ/H . We again take χ = 2/3 and set
g = 0.75, a typical value for fine-mode aerosols.

Under these assumptions, Fig. 3 shows the same four basic responses used in Fig. 2, but this time as a
function of log τ and ̟0. We let, with some trepidation, the latter SSA parameter vary from unity down to 0.7,
which at least begins to capture the absorbing aerosol SSA values found in nature. Although we are still very
interested in the plumes geometrical (H) and optical (τ) thicknesses, SSA is the highest value target because
it is very informative about the particulate’s chemistry and history. Not to mention the fact that SSA controls
the poorly-understood “semi-direct” effect of aerosols on the climate system, by which they heat the atmosphere
and potentially change its thermal structure enough to inhibit cloud formation.

The best way to read Fig. 3, which displays the four functions of (̟0, log τ), is to inspect the isolines of non-
dimensional moment ratios (top row) and, if necessary, albedo (lower right), two-by-two. We seek regions where
the families of isolines intersect each other at the largest possible angle. That way, we can pinpoint (̟0, log τ)
with two judicious observations. Then the fourth function, in this case, again H/〈ct〉, can be used to translate
the observed 〈ct〉 into an estimate for H .

The only region of (̟0, log τ)-space with some degree of iso-line orthogonality in the top row is at low τ (.3)
and low ̟0 (.0.9). This is not where diffusion works the best and in fact, the standard 1D RT models used in
operational aerosol retrievals still work relatively well, which does not mean it is easy to tease out the absorption
(hence SSA) from the scattering. There is hope that polarization will help that cause.38, 39

The good news is that multiple scattering moment ratios in the top row of Fig. 3 are sensitive to SSA (and
only SSA) in the optically thick regime where the operational aerosol algorithms invariably fail. Therefore,
although this is also the case for the existing sensors measuring R, it can be done with a multiple scattering lidar
system without the need for radiometric calibration. Specifically, in the limit τ → ∞, we can use the g = 0.75
results in Fig. 5 below (computed however using ζ = 0) for getting ̟0 from

√

〈(ct)2〉/〈ct〉. Alternatively, we can
use

lim
τ→∞

〈ρ2〉
〈ct〉2 (̟0, g, τ) =

2
√

(1 − ̟0)(1 − ̟0g)
(

3(1 − ̟0)χ
2 − (1 − ̟0g)

)

27(1 − g)2̟2
0χ

×
(√

3g̟0 − 6χ
√

(1 − ̟0)(1 − ̟0g) −
√

3
(

1 + 3(1 − ̟0)χ
2
)

(1 − ̟0g) + 2
√

3χ
√

(1 − ̟0)(1 − ̟0g) + 3(1 − ̟0)χ2

)3

, (74)
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Figure 3. Utilization of three moments from an aerosol plume’s Green function in space and/or in time, plus its albedo R,
to infer the three basic aerosol plume properties {H, τ, ̟0}. In the upper-left panel, we notice the high-τ/low-̟0 region
where there was a singularity for 〈(ct)2〉/〈ct〉2. Also, we only plot the region where Schwartz’s inequality, 〈(ct)2〉 ≥ 〈ct〉2,
is verified by the predictions of this simple 3+1D RT model. See further discussion in main text.
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Figure 4. Asymptotic (τ → ∞) limit for 〈ρ2〉1/2/〈ct〉 from (74). For most, but not all, values of g, this function of ̟0

(denoted ω) is monotonic and can thus be used to estimate SSA from non-calibrated multiple scattering lidar data. See
further discussion in main text.

which is plotted in Fig. 4, to solve (numerically) for ̟0, given g and χ. That done, the lower left-hand panel in
Fig. 3 and the observed 〈ct〉 (or

√

〈ρ2〉) gives us a one-to-one nonlinear connection between τ and H .

In conclusion, it seems that it will be difficult to jointly retrieve the trio of absorbing aerosol plume parameters
{̟0, τ, H} from a multiple scattering lidar system since absorption dominates the signals. That said, one should
be able to estimate ̟0 approximately, and without relying on radiometric calibration. From there, one can
determine a nonlinear relation between H and τ .

4.4 Snow and Sea Ice

For a detailed feasibility study on probing snow and sea ice with multiple scattering lidar, with an airborne
system in mind, we refer the interested reader to the paper by Várnai and Cahalan.40 Their investigation is
based on numerical Monte Carlo solutions of the forward Green function problem, including a realistic (e.g.,
noisy) instrument model. In the absence of absorption, this problem is not fundamentally different from the
cloud problem. Therefore, unsurprisingly, the authors find that H , and we suspect possibly also τ , can be
inferred using a THOR-like system. These authors followed up on their numerical investigation with some
simple experiments.41

Várnai and Cahalan bring up the issue of absorption by aerosol particles trapped in the snow, which we
address here head-on using another diffusion model. We approximate the dirty snow layer with a semi-infinite
scattering medium that also has some absorption. Specifically, we solve

dFz/dz = −
(

σa + s + k2/3σt

)

J, (75)

dJ/dz = −3σtFz, (76)

for {J, Fz}(z), as we did for clouds, but with BCs J(0) + 2χFz(0) = 4 and now {J, Fz}(z) → 0 as z → ∞. The
outcome is

R(s, k2) =
J(s, k2)

2
− 1 =

σt − χ
√

k2 + 3(s + σa)σt

σt + χ
√

k2 + 3(s + σa)σt

, (77)



which we follow by the usual change of variables: σa = (1 − ̟0)σ and σt = (1 − ̟0g)σ.

Figure 5 shows three multiple scattering lidar responses, plus overall albedo, derived from (77) as functions
of ̟0 and g. All panels here, as well as Fig. 4, show a strong sensitivity to ̟0 as it approaches unity, and this
is made clear in (74) with the prominent

√
1 − ̟0 factor. On the left, we have the time-dependent responses,

and on the right their steady-state counterparts. Knowing one moment along with the pair {̟0, g}, one can use
the appropriate bottom plot to obtain the extinction σ. However, the iso-lines in the two panels in the top row
have very similar patterns, which means that we’ll need to make an assumption about g in order to get ̟0, the
high-value remote sensing target. Fortunately, there is robust knowledge of the scattering properties of snow
particles.42

4.5 Bathymetry in Highly Turbid Shallow Waters

Lidar is increasingly used to generate 3D maps of terrain, as well as built environments.43 All that is needed is
to know precisely the position of the pulsed laser source and the direction it is pointing at, and detect the strong
return from the ground or building. Ranging does the rest. Above-ground vegetation gives detectable returns
but these false alarms for terrain detection are easily filtered in the time domain:44 we are interested only in
the last return, even if it is weakened. The same technology can be used to map the terrain underwater (laser
bathymetry), correcting for refraction at the air-water interface.45

However, all of this assumes there is a detectable return coming directly from the target, be it the ground,
a building, or the sea floor. But coastal or river waters are often highly turbid, heavily laden with suspended
particulate matter known as “hydrosols,” as well as aquatic plants. We view this “cloudiness” of the water as
a candidate for deep penetration with multiple scattering lidar technology. Like aerosols, the hydrosols can be
absorbing but, unlike any of the prior applications, there is a necessarily a partially reflective surface underlaying
the medium.

We can use the same methodology as in the previous case studies to see if multiple scattering lidar can be
of help. We have set the problem up using the summed expansion in multiple surface reflections in (57) when
surface albedo α > 0. Therefore, we need to compute both reflection and transmission functions dependent on
(s, k2), apart from parameters that define the medium. We need to do this, one at a time, for both collimated
(Ec = 1) and diffuse (Ed = 1) sources. In the former case, we have activated δ-Eddington rescaling of g and
tau. Hydrosol phase functions are highly forward-peaked, with g = 0.96 being a typical value, which leads to
g′ ≈ 0.49 in (58) with f = g2, very near the theoretical limit of 1/2.

Even assuming, for simplicity, that the hydrosols are non-absorbing (σa = 0), the resulting expressions are
increasingly complex as we go from albedo to mean path and RMS horizontal transport to higher-order moments.
But modern computer-assisted symbolic math applications can handle them. Apart from the sea floor’s albedo
α, the remote sensing unknowns are τ , the optical depth of the water and, most importantly, the water depth
H .

Figure 6 shows the usual line-up of multiple scattering lidar responses, plus the albedo of the volume/surface
system. With three unknowns, we will need all three moments to work properly for us. By that, we mean
that the iso-lines of moment ratios (top row panels) need to have intersecting flows in interesting parts of the
two-dimensional optical parameter space {α, τ}. This is indeed the case, at least in the intermediate τ region,
especially for the higher α’s. However, it is fair to say that both moment ratios in the top row are primarily
functions of τ at the higher values of particular interest here. This is therefore a situation where radiometric
calibration, hence access to R0 would be very helpful to position the medium in ({α, τ}) space. The good news
is that this could be done with a non-imaging wide-FOV system, using only the left-hand and lower-right panels.
Only the new fore-optics need to be provided to implement the “multiple-scattering” channel.

In the upper left panel displaying
√

〈(ct)2〉/〈ct〉, we note that the diffusion model predicts numbers that are
less than unity, thus violating Schwartz’s inequality in probability theory, at optical depths below ≈10. This
is a reminder that, unlike RT theory, diffusion theory is not sufficiently constrained to ensure either causality
(
√

〈ρ2〉 can exceed ct at early times) or positive definite solutions, i.e., the diffusion theoretical predictions for
boundary-source/boundary-viewing Green functions are not necessarily valid PDFs for the probability of escape
at (ct, ~ρ). This is a shortfall for the model were it to be applied to real-world data analysis, but it does not
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Figure 5. Utilization of three moments from the Green function in space and/or in time, plus albedo R0, for a semi-infinite
layer of dirty snow to infer the two basic properties {̟0, g} (with ω denoting ̟0). Another potentially useful moment
ratio,

p

〈(ct)2〉/〈ct〉, computed (using ζ = 1) for the semi-infinite scattering and absorbing medium is displayed in (74)
and Fig. 4. More discussion in main text.
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Figure 6. Utilization of three moments from the Green function in space and/or in time, in addition to albedo R0, to infer
three basic properties of an expanse of shallow but turbid coastal water, including its depth H and two optical properties
τ and α. We assume, for simplicity, that ̟0 = 1 (no absorption by particulates in water) and that g = 0.96 (leading to
a rescaled value of g′ = 0.49). Actual computations use g′ and τ ′ = (1 − g) × τ from the horizontal axis. See main text
for further discussion.



invalidate the general parametric trends it predicts nor the exploitation we make of them here, namely, to extract
the general information content of multiple scattering lidar signals.

At any rate, knowing where we are in (α, τ) space enables us to use the lower left panel to convert 〈ct〉 into
an estimate of water depth H .

5. SUMMARY & OUTLOOK

In summary, I have laid down the physical foundations for building predictive forward models for multiple
scattering lidar systems. First, I brought radiative transfer theory to bear. In a nutshell, multiple scattering
lidars are designed to observe those space-time Green functions of the probed optical medium that are visible
from the illuminated boundary. Then I used the asymptotic approximation for optically thick media, namely,
radiative diffusion theory. Several further or lesser approximations are also introduced. The diffusion modeling
framework is used here to predict in closed-form the dependence of spatial and temporal moments of the Green
function on the parameters of the medium. In turn, these analytical expressions were use to determine the
information content of the multiple scattering data, at least from ideal instruments. Several specific applications
were revisited or explored here for the first time.

Specifically, we looked back at multiple scattering lidar accomplishments as emerging cloud remote sens-
ing tools, explaining post-facto why the actual (less-than-ideal) instruments produced data from which cloud
thickness and optical depth were inferred. Moreover, the inferred values compared very well with independent
observations by collocated cloud sensing systems. We then generalized the diffusion model to account for ab-
sorption and explored the possibility of probing dense plumes of absorbing aerosol (e.g., smoke, dust, ash) near
their sources—a topic a considerable interest to several scientific communities. Due to the dominance of ab-
sorption, we only anticipate the possibility of obtaining the particulates’ single scattering albedo using, however,
non-calibrated multiple-scattering lidar signals and constraining the relationship between the plume’s optical
and geometrical thicknesses.

Turning from atmospheric to surface-level media, we echoed the optimism of Várnai and Cahalan about the
application of modified multiple scattering cloud lidar systems for probing sea ice and clean snow. We also
extended their exploration into the realm of dirty (polluted) snow, which may be partly why the arctic regions
are experiencing such rapid climate change. We concluded that, as long as we have ancillary information about
the scattering properties of the snow, we can infer its single scattering albedo without the need for accurate
radiometric calibration that plagues passive instruments.

Finally, we examined the possibility of using a down-looking multiple scattering lidar to perform a bathymetry
of highly turbid coastal waters, a situation where direct detection of the underlaying surface signal is inhibited.
We concluded that such an extension of standard laser bathymetry to situations where the water is optically
thick enough to hide this direct return in multiply scattered laser light is possible as long as the instrumentation
is available to measure off-beam this highly scattered laser light in highly stretched pulses. This last potential
application of multiple scattering lidar is definitely worth pursuing with a more detailed feasibility study.
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